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Abstract: 

In this paper, PM2.5 concentrations are predicted for all counties in China, using the geographically 

weighted regression (GWR), the geographically weighted Lasso, the geographically weighted Elastic net, 

and multiscale GWR models. Predictor variables include spatially localized county-level economic 

activities, population, road network, land use, aerosol optical depth, meteorological and topographic 

factors. Economic, population, road network and land use data are localize (within 8 Km from the 

locations studied) to improve the accuracy of the prediction. We found that incorporation of geographic 

weights into the Lasso and Elastic net models cannot enhance the prediction capacity of them. Multiscale 

GWR can partially correct the underestimation problem of the GWR model, but presents a lower cross 

validation R2, and proves to be a time-consuming algorithm. Among those models, GWR is the best 

model with the highest cross validation R2 (0.8276), and lowest RMSE (7.4752), MAE (5.3904) and 

MAPE (0.1127). The county-level PM2.5 concentration map predicted by GWR is presented. 

Keywords: PM2.5 concentrations, GWR, MGWR, Lasso, Elastic net. 

 

I. INTRODUCTION 

 

About 70% of the population in East Asia are living in an average concentration of fine particulate 

matters (PM2.5) above the WHO interim target of 35 μg/m
3
, 92% of the global population live in areas 

where concentrations of PM2.5 are above 10 μg/m
3
 [1], and the pollutant causes over 3 million annual 

premature deaths [2]. Thus, accurate prediction of PM2.5 concentrations can assist people, especially for 

outdoor workers, in avoiding exposure to the pollutant. With regard to the prediction of PM2.5 

concentrations, van Donkelaar et al. (2015) derived 10 km × 10 km global PM2.5 estimates from 1998 to 

2012 from satellite sources and found that global ambient PM2.5 concentrations annually increased 0.55 

μg/m
3
, and average PM2.5 concentrations in eastern China’s urban areas are larger than 80 μg/m

3
 [3]. Their 

estimates are popularly used in academic studies. The correlation coefficient and the slope between 

estimated concentrations and ground-based observations outside North America and Europe are 0.81 and 
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0.68, respectively. The quality of the prediction can be improved if more factors are included. Based on 

PM2.5 composition estimated from a chemical transport model and aerosol optical depth (AOD), van 

Donkelaar et al. (2019) predicted concentrations of several air pollutants with improved accuracy using a 

geographically weighted regression over 2000−2016 [4]. Their study focuses on North America. In China, 

the 11
th

 and 12
th

 Five-Year Plan of China set emission reduction targets for the precursors of PM2.5 [5], and 

hence air quality had significantly improved since then. Therefore, it is necessary to give a new version of 

the PM2.5 concentration distribution which is not only derived from satellite data, but also considers the 

localized economic activity, population, road network and land use. 

 

Although there are other methods used in the prediction of PM2.5 concentrations, such as the dynamic 

spatial panel model [2], the neural network [6] and the random forest [7], the geographically weighted 

regression (GWR) remains one of the most frequently used method in PM2.5 concentration estimation 

[4,5,8]. In comparison with existing studies, our study also uses the geographic weighted method 

mentioned above. However, we focus on county-level data in China, which enables us to use more 

accurate socioeconomic data within a certain distance from the studied points and other localized transport 

network, land use, meteorological and topographic factors, to improve the accuracy of prediction. In 

addition to GWR, geographic weights are also fused with other methods in this study, such as the Lasso 

model with geographic weight and the Elastic net model with geographic weights. An improved version of 

GWR, i.e., multiscale GWR is also tested in this paper to find out the best solution within the method 

group of geographically weighted approaches. 

 

II. DATA 

 

The observed ground-level PM2.5 concentrations are obtained from the China Environmental 

Monitoring Center (CEMC). Annual averages of PM2.5 concentrations in 2015 are calculated for each 

monitoring station. Totally, data from 1494 stations are kept after removing missing values. Similar to 

Chen et al. (2019) [9], aerosol optical depth (AOD) retrieved from NASA MODIS (Moderate Resolution 

Imaging Spectroradiometer) are used as the main explanatory variable of PM2.5. Especially, within this 

database, the Multi-angle Implementation of Atmospheric Correction (MAIAC) product (MCD19A2) with 

a resolution of 1km, which integrates Tera and Aqua images, is chosen as Fu et al. (2020) indicated that it 

is a good predictor for PM2.5 [2]. The distributions of PM2.5 and AOD are shown in Figure 1. The quantile 

distributions of AOD and observed PM2.5 concentrations are presented in Table I. The distributions of AOD 

and ground-level concentrations illustrate a similar pattern, and thus AOD tends to provide an unbiased 

estimation of PM2.5 concentrations in terms of distributions. 
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a. Histogram of ground-level PM2.5 

concentration 

 

b. Histogram of AOD 

Figure 1 Comparison of the distributions of ground-level PM2.5 concentrations and AOD 

 

TABLE I. Quantile distributions of ground-level PM2.5 concentrations and AOD 

 

 N-Obs Mean Std Min 0.25 0.5 0.75 Max 

Ground-level PM2.5  1494 52.31 18.49 10.236 38.96 52.06 62.44 129.71 

AOD 1494 469.22 171.73 14 338.13 477.90 596.91 895.15 

 

Weather conditions, such as wind and precipitation, affect the diffusion and removal of the pollutants. 

Meteorological data for county points are sourced from ERA-Interim data, except that relative humidity is 

from NCEP FNL. After correcting the multicollinearity issue of predictor variables and checking the 

fitness of the models, among those meteorological variables, 10 meter wind speed (10SI), 2 meter 

temperature (2T), boundary layer height (BLH), relative humidity (RH), surface pressure (SP), surface 

solar radiation (SSR) and total precipitation (TP) are used in our model. As plants can partially purify the 

polluted air, the enhanced vegetation index (EVI) from MODIS is considered in our model. 

 

County-level data, such as GDP, output values and labors of the primary industry, secondary industry 

and tertiary industry, and industrial emissions are obtained from the statistical yearbooks of the 

corresponding prefecture cities. Population density is sourced from WorldPop, and has been adjusted with 

county-level census data. Road network data are from OpenStreetMap, downloaded in Mar. 2018, to make 

it more consistent with the pollution data in terms of sampling date. Topographic data, such as the Digital 

Elevation Model (DEM), are from NASA SRTM (Shuttle Radar Topography Mission), and slopes are 

calculated based on DEM. Land use data are from GlobeLand30. 

 

 

 



Forest Chemicals Review 
www.forestchemicalsreview.com 
ISSN: 1520-0191  
Nov-Dec 2021 Page No. 291-299 
Article History: Received: 05 October 2021, Revised: 02 November 2021, Accepted: 25 November 2021, Publication: 31 
December 2021 

 

 

294 
 

III. METHODS 

 

The econometric model of geographically weighted regression is shown in Equation (1). Where yi is 

the PM2.5 concentration at location i, and β0i and βki change with geospatial coordinates of location i. xi,k is 

the explanatory variables that have been described in the previous section. The coefficient vector βi can be 

estimated with Equation (2), where X is the matrix of the explanatory variables, W(i) is a diagonal weight 

matrix that weights in the diagonal are calculated with the bisquare function given in Equation (3). dij is the 

distance between location i and j, b means the bandwidth, and ′ denotes the matrix transpose operation. 

 

         y𝑖 = 𝛽0𝑖 + ∑ 𝛽𝑘𝑖𝑥𝑖,𝑘 + 𝜀𝑖
𝑚
𝑘=1                               (1) 

 

         β̂𝑖 = [𝑋′𝑊(𝑖)𝑋]−1𝑋′𝑊(𝑖)𝑦                             (2) 

 

        w𝑗(𝑖) = {
(1 −

𝑑𝑖𝑗
2

𝑏2 )2,   𝑖𝑓𝑑𝑖𝑗 ≤ 𝑏

0,                  𝑖𝑓𝑑𝑖𝑗 > 𝑏
                            (3) 

 

To improve the prediction accuracy, population, GDP, industrial output values, sums of road network 

lengths, means of slopes, areas of different types of land covers are all mean or sum values within 8 Km 

from location i. Sums of road network lengths, means of slopes, areas of different types of land covers are 

calculated based on GIS. Population within 8 Km can be estimated by summing up the population density 

within an 8Km circle from location i. GDP and industrial output values are usually provided at a county 

level, so we allocated them to locations by the proportion of the population within 8 Km in the total 

population of that county. 8 Km buffer is applied in this study as Zhai et al. (2018) found that land use data 

acquired within 8 Km have significant effects on PM2.5 concentrations [8]. Knibbs et al. (2014) also found 

that except the satellite data of the pollutant, the next largest contributors of the pollutant columns are 

roads within 8 Km and industrial land use within 10 Km [10]. Local road network lengths are incorporated 

in the model as traffic plays an important role in urban air pollution, especially in cities where large point 

pollution sources are moved outside the city [11]. 

 

As multicollinearity issue may exist in explanatory variables, the Least Absolute Shrinkage and 

Selection Operator (LASSO) [12] and Elastic net [13] approaches are also tried with our data. Chen et al. 

(2019) suggested using Lasso or Elastic net in fine particles pollution estimation [9]. The Lasso model can 

reduce the variability of the coefficients by limiting the sum of the absolute values of βi, and allows for 

factor selection by shrinking some of the coefficients to zero. In contrast with the previous studies, in our 

study, geographic weights are combined with the Lasso model (GWLasso), and the coefficient vector βi of 

GWLasso can be obtained with Equation (4), where the last term starting with λ is the penalty term, and 

the main part of this term is the sum of the absolute values of βi. 

 

      β̂𝑖
𝐺𝑊𝐿𝑎𝑠𝑠𝑜 = arg min𝛽 {

1

2
∑ (𝑦 − 𝛽0𝑖 − ∑ 𝛽𝑘𝑖𝑥𝑖𝑘

𝑚
𝑘=1 )2 + 𝜆 ∑ |𝛽𝑘𝑖|

𝑚
𝑘=1

𝑛
𝑖=1 }       (4) 
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As Lasso tends to remove one variable out of a set of correlated variables, this causes that the estimated 

coefficients become unstable. To stabilize the model, an l2 penalty term is added and this results in the 

Elastic net model. After adding the geographic weights, we change the normal Elastic net model into GW 

Elastic net model, and the estimation of the coefficients is given in Equation (5). 

 

 β̂𝑖
𝐺𝑊𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑁𝑒𝑡 = arg min𝛽 {

1

2
∑ (𝑦 − 𝛽0𝑖 − ∑ 𝛽𝑘𝑖𝑥𝑖𝑘

𝑚
𝑘=1 )2 + 𝜆𝜌 ∑ |𝛽𝑘𝑖| + 𝜆(1 − 𝜌) ∑ 𝛽𝑘𝑖

2𝑚
𝑘=1

𝑚
𝑘=1

𝑛
𝑖=1 }                            

(5) 

 

In comparison with GWR, Multiscale GWR (MGWR) assigns different bandwidths for different 

predictor variables, i.e., varying at different spatial scales [14]. The econometric model of MGWR is given 

in Equation (6), where subscript b of β indicates the bandwidth used for that particular explanatory 

variable. 

 

         y𝑖 = 𝛽𝑏0𝑖 + ∑ 𝛽𝑏𝑘𝑖𝑥𝑖,𝑘 + 𝜀𝑖
𝑚
𝑘=1                            (6) 

 

After a forward stepwise selection, and by cross validating, the most relevant variables, AOD, localized 

output values of the secondary industry(Ind2_8K), localized sums of the road network lengths 

(Roadnet_8K), localized population (Pop_8K), localized mean slopes (Slope_8K), 10SI, 2T, BLH, RH, SP, 

SSR, TP, DEM and EVI, are kept in the model. The suffix 8K in variable names indicates that the values 

are localized within 8Km from the location, and variables without the 8K suffix use point values exactly 

sampled at the spatial location.  

 

IV. RESULTS 

 

To assess the quality of the prediction results from models mentioned about, the leave-one-out cross 

validation (CV) is used for the GWR, GWLasso, GW Elastic Net models, and 80-fold cross validation is 

used for the MGWR model. As geographically weighted regressions highly depend on the spatial weight 

matrix, the 10-fold cross validation is not suitable for our case as it reduces the dimensions of the spatial 

weight matrix by 1/10, which can significantly distort the results. Thus, the leave-one-out cross validation 

is the best choice in our study. However, running MGWR for a leave-one-out cross validation may take 

several months. To keep it in an acceptable time span, an 80-fold cross validation is used for MGWR 

instead, which does not distort the results much (checked with experiments). The cross validation results of 

the GWR, GWLasso, GW Elastic net and MGWR models are shown in Figure 2 (a), (b), (c) and (d), 

respectively. 
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(a) GWR cross validation results (b) GWLasso cross validation results 

  

(c) GW Elastic net cross validation results (d) MGWR cross validation results 

 

Figure 2 Cross validation results of GWR, GWLasso, GWElastic net and MGWR 

 

From Figure 2, one can see that GWR has the highest cross validation R
2
 of 0.8376 and the second 

large slope of 0.8543, which means that it fits the sample best. However, GWR slightly underestimates the 

concentrations as the slope is lower than one. MGWR, as a result of using variable bandwidths, performs 

better in terms of the slope, but does not fit the sample as well as GWR. Other detailed cross validation 

outcomes are given in Table II, including RMSE (Root Mean Square Error), MAE (Mean Absolute Error), 

MAPE (Mean Absolute Percentage Error) and correlation coefficients, which suggests that GWR is the 

best model, with the lowest RMSE, MAE and MAPE among those four models. Therefore, predicted PM2.5 

concentrations for counties are calculated with the GWR model and are presented in Figure 3. The first 

row of the table presents the correlation between AOD and the ground-level concentrations, suggesting that 

all models significantly improve the prediction capacity of AOD by adding more predictor factors and 
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using advanced models. 

 

TABLE II. Comparison of the cross validation results 

 

Model r R
2
 Slope RMSE MAE MAPE 

AOD 0.4971 0.2471     

GWR 0.9152 0.8376 0.8543 7.4752 5.3904 0.1127 

GWLasso 0.9061 0.8209 0.8086 7.8569 5.7748 0.1208 

GW Elastic Net 0.9078 0.8243 0.8223 7.7792 5.6781 0.1190 

MGWR 0.8951 0.8012 0.9174 8.5853 5.9687 0.1214 

 

 

 
Figure 3 County-level PM2.5 concentrations predicted by GWR 

 

Circle points in Figure 3 indicate the locations of the monitoring stations, and the color in the polygons 

shows the predicted concentrations of counties. Figure 3 demonstrated high agreement between the 

monitoring values and the predicted concentrations. The model also presents predicted concentrations for 

those counties without monitoring stations. It is noteworthy that as the locations of the urban areas of the 

counties are used in our study, the concentrations shown in the map only represent the central cities of the 

counties, not the rural areas. If locations of rural areas are used to collect the explanatory variables, 

concentrations of the rural areas can also be predicted. 
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Compared with some existing studies, our study presents predicted concentrations with relatively 

higher accuracy. For example, the cross validation correlation coefficient of van Donkelaar et al. (2015) is 

0.81 [3], in contrast with r = 0.9152 in our study. The cross validation R
2
 from the GWR model of Zhai et 

al. (2018) is 0.831 [8], and cross validation R
2
 = 0.70 from Van Donkelaar et al. (2019) [4], in comparison 

with our cross validation R
2
 of 0.8376. Cross validation RMSE from our prediction is 7.4752 μg/ m

3
, 

which is lower than 9.3 μg/ m
3 

from Xiao et al. (2020) [5]. 

 

V. CONCLUSION 

 

The comparison among GWR, GWLasso, GW Elastic net and MGWR implies that the complicated 

models, such as the Lasso and Elastic net models do not perform better than the GWR model, in terms of 

PM2.5 concentration prediction. This suggests that the limits set to the coefficients of the regressions may 

cause more troubles than they resolve, and probably multicollinearity is not so serious within the 

explanatory variables after the variable selection. The Multiscale GWR model, i.e., the multi-bandwidth 

GWR model, can partially correct the underestimation of the GWR model. However, it also reduces the 

accuracy of the prediction as the quality of its prediction highly depends on the bandwidths used. MGWR 

proves to be a very time-consuming algorithm. The findings above are only relevant to PM2.5 prediction. In 

our research, we found that the appropriate method may vary with the pollutant studied. 

 

Our concentration prediction, which considers localized socioeconomic, geographic and 

meteorological factors, presents more accurate estimates and covers areas without monitoring stations. The 

predicted results suggest that PM2.5 concentrations are low in the mountainous areas of the county, low in 

the rainy areas, such as the Southern China, and high in the Northern China regions with high intensity of 

economic activities and high density of population. It is clear that the air quality of China had been 

significantly improved since the implementation of various clean air policies. 
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