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Abstract: 

The research purpose of this paper is to establish a multi-scale high-fidelity digital model and 

a reduced-order model for digital twin of composite structures. Firstly, a high-fidelity digital 

model is established for the composite structure using micro-meso-macro multi-scale method 

to accurately describe the composite structure. Then, in order to meet the real-time needs of 

digital twin, the reduced-order model is studied by using three training algorithms for 

comparative study: Bayesian Regularization (B-R), Levenberg-Marquardt (L-M), and Scaled 

Conjugate Gradient (SCG). B-R training algorithm with smaller error is chosen to establish a 

neural network reduced-order model. Finally, with the multi-scale high-fidelity digital model 

as a reference, the maximum error of the established reduced-order model is 5.64%, which 

can meet the needs for multi-scale digital twin modeling of composite structures. 

Keywords: Composite structure, High-fidelity digital model, Reduced-order model, Multi-

scale modeling, Neural network. 

 
I. INTRODUCTION 

 

Composites are widely used in aviation, aerospace, shipbuilding, machinery fields [1]. The 

mechanical properties and failure mechanism of composites are not only related to macroscopic 

properties but also closely related to microscopic parameters like component properties, 
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distribution, interface. Hence, the composite failure state and failure mode are more 

complicated than metal materials. As a disruptive frontier technology, digital twin technology is 

of great engineering application value in the prediction of damage and fatigue behavior of 

composite structures. The key technology in digital twin of composite structures lies in online 

deployment of multi-scale high-fidelity digital modeling and its reduced-order models. 

Therefore, it is necessary to establish a multi-scale composite model to accurately express the 

composite structure [2], and study reduced-order model to meet real-time requirements. 

 

In 2011, the U.S. Air Force Laboratory proposed the concept of Airframe Digital Twin and 

applied the digital twin technology to the life management of aircraft structures [3]. Lai and 

Song et al. established a crane digital twin model for real-time analysis based on SPI-DA, 

including analysis model, theoretical model and artificial intelligence model [4]. Botz et al. 

used historical data and finite element data to establish a reduced-order model for the nonlinear 

structure of wind turbines, which provided a basis for the establishment of digital twin model 

[5]. Saboktakin et al. took two-dimensional braided composite as the research object, 

established a multi-scale high-fidelity digital model to simulate tensile progressive damage, and 

verified accuracy of the method through experiments [6]. By combining data-driven technology, 

Han et al. established a reduced-order model based on the establishment of microscopic and 

mesoscopic models to predict the macroscopic properties of composite structures
 
[7]. Wu et al. 

carried out a multi-scale analysis of braided composites, using microscopic parameters as the 

input parameters of the reduced-order model (ROM) for learning and training, and used the 

reduced-order model for nonlinear analysis of the braided composites
 
[8]. 

 

The above-mentioned research objects for digital twin are mostly metal material structures, 

and there are few researches on digital twin for composite structures. Also, there are few 

studies on multi-scale high-fidelity digital models and reduced-order models that support the 

digital twin modeling of composite structures. Therefore, this paper takes composite structure 

as the research object and establishes a multi-scale high-fidelity digital model and a reduced-

order model that can be used for digital twin of composite structure to provide a basis for the 

establishment of digital twin model for composite structures. 

 

II. EXAMPLE VERIFICATION OF MULTI-SCALE MODELING AND REDUCED-

ORDER MODEL 

2.1 Multi-scale Modeling 

 

2.1.1 Micro and Meso-scale modeling 

 

Microstructure refers to the structure of a material at a micro-scale. Different material 
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microstructures will cause huge differences in material mechanical properties. Fabric 

composites have different constituents at the meso-scale and micro-scale levels, and changes in 

material structure on these two scales will cause changes in mechanical properties of the 

materials. In multi-scale modeling, micro-scale modeling is first performed to establish the 

model of single fiber and matrix. Mesh generation is performed in ANSYS software, and 

periodic boundary conditions [9, 10] are applied for homogenization to derive linear elastic 

parameters. Then, the above linear elastic parameters are used as input to establish the meso-

scale model, which is then homogenized 
[11, 12]

 to derive the macro-linear elastic parameters. 

The fiber matrix material parameters take the parameters in the literature [13] as input, as 

shown in Table I. The micro-scale model parameters are shown in Table II (Vft1 is the fiber 

volume fraction in the micro RVE model), and the micro RVE model is shown in Fig 1. 

 

TABLE I. Material properties of the constituents 

 

Material property Fiber(T300) Matrix(Epoxy resin) 

E1 (GPa) 230 3.50 

E2=E3 (GPa) 40  

G12=G13 (GPa) 24 1.30 

G23 (GPa) 14.30  

v12=v13 0.26 0.35 

v23 0.44  

 

TABLE II. Microscopic RVE model parameters 

 

Model property Value 

Fiber volume fraction in microscopic RVE model Vft1 0.628 

Fiber diameter d (μm) 8.32 

microscopic RVE model length L (mm) 1 

microscopic RVE model width W (mm) 1 

microscopic RVE model thickness H (mm)  

 

In order to verify whether the elastic parameters derived from micro-homogenization 

calculation are accurate, Chamis 
[14]

 model formula is used as the basis for judgment. The 
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Chamis model formula is shown in formulas 1~5: 

 

  (1) 

  (2) 

  (3) 

  (4) 

  (5) 

 

Chamis model formula calculation is compared with micro-homogenization calculation, 

with the results shown in Table III. It can be seen that the micro-homogenization calculation 

results have an axial elastic modulus error of 0.01%, an axial Poisson's ratio error of 3.33%, 

while other parameters have bigger error, mainly because Chamis model does not consider the 

possible effect of different fiber arrangements on the transverse elastic modulus and shear 

modulus of the composite. This verifies the correctness of the micro-homogenization method. 

 

TABLE III. Microscopic RVE model calculation results 

 

Material property Chamis model Homogenization Error(%) 

E1 (GPa) 145.74 145.75 0.01 

E2=E3 (GPa) 12.64 11.70 7.44 

G12=G13 (GPa) 5.19 4.68 9.83 

G23 (GPa) 4.65 4.07 12.47 

v12=v13 0.30 0.29 3.33 

v23 0.36 0.45 25.05 
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Fig 1: microscopic RVE model 

 
 

Fig 2: meso-scale RVE model: (a) 3D meso-scale RVE model, and (b) cross-section view of 

interlacing yarns 

 

The parameters of the meso-scale model are shown in Table IV, and the mesoscopic RVE 

model is shown in Fig 2 (a, b). We usually think that braided composites are balanced. That is 

to say, the warp and weft have the same waviness and yarn volume fraction. Suppose that the 

adjacent yarns are filled with matrix, then yarn path can be described using a series of 

approximately rectangular cross-sectional strip shape, as shown in Fig 2(b). According to the 

yarn geometric parameters in Table II and Table III and the fiber volume fraction Vft1 (equal to 

the fiber volume fraction Vft2 in the yarn) in the microscopic RVE, the volume fraction Vtow and 

fiber volume fraction Vfiber of the yarn in the mesoscopic RVE are calculated using equations (6) 

and (7) (the fiber volume fraction is the volume fraction of fibers in the mesoscopic RVE, 

which is also approximately equal to the overall fiber volume fraction of the composite): 
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  (6) 

  (7) 

 

 

TABLE IV. Meso-scale RVE model parameters 

 

Model property Value 

Yarn width l1 (mm) 1.047 

Yarn spacing l2 (mm) 1.45 

Yarn thickness tw (mm) 0.11 

Meso-scale RVE model width λ (mm) 5.80 

Yarn volume fraction Vtow 0.722 

Fiber volume fraction in yarn Vft2 0.628 

Fiber volume fraction in weave Vfiber 0.453 

 

The linear elastic results and material strength parameters calculated by the meso-scale 

model are shown in Table V: 

 

TABLE V. Meso-scale RVE model calculation results and strength parameters of the 

constituents 

 

Material property Homogenization Strength property Value 

E1= E2 (GPa) 49.26 Stx=Sty (MPa)  693 

E3 (GPa) 10.36 Stz (MPa) 50 

G12 (GPa) 3.24 Scx=Scy (MPa) -509 

G13=G23 (GPa) 3.09 Scz (MPa) -107 

v12 0.09 τyz=τxz (MPa) 125 

v13=v23 0.43 τxy (MPa) 65 

 

2.1.2 Macro-scale modeling 

 

According to the standard specimen in reference [13], a three-dimensional model of the 

standard specimen is established at the macro scale, and the linear elastic parameters calculated 

by the meso-scale model are used as the input of the material parameters for the ply design of 
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the standard specimen. The macroscopic model of standard specimen is finally obtained (each 

layer thickness is 0.23mm, the ply parameter is [0
o
]9). Fig 3 shows a schematic diagram of the 

standard specimen. 

 

 
(a) 

 
(b) 

 

Fig 3: schematic diagram of standard specimens of carbon fiber composites: (a) physical of 

standard specimen, and (b) Standard specimen 3D model 

 

The predicted value of the multi-scale high-fidelity digital model established herein and the 

three experimental data stress-strain curves in the literature [13] are shown in Fig 4. The MFE 

curve is the predicted data of the multi-scale high-fidelity digital model, and EXP1, EXP2, and 

EXP3 are respectively the three experimental data curves in the literature [13]. From Fig 4, it 

can be seen that the material elastic modulus predicted by the multi-scale high-fidelity digital 

model after fiber and matrix damage initiation is slightly higher than the experimental value. 

Compared with the three test curves in literature [13], The stress-strain curve errors predicted 

by the multi-scale high-fidelity digital model established in this paper are 6.41%, 10.16%, 

13.20% respectively, and the average error is 9.92% < 10%, which proves the correctness of the 

multi-scale high-fidelity digital model. 

 



Forest Chemicals Revew 
www.forestchemicalsreview.com 
ISSN: 1520-0191  
July-August 2021 Page No. 1469-1482 
Article History: Received: 12 May 2021 Revised: 25 June 2021 Accepted: 22 July 2021 Publication: 31 August 2021 

  

1476 
 

 
Fig 4: comparison between multiscale finite element model prediction and testing and tested 

stress-strain curves 

 

2.2 Reduced-order Model 

 

Reduced-order model is derived based on the training data of the BP neural network model. 

The process for establishing the BP neural network reduced-order model can be divided into 

four steps: collecting data, creating a configuration network, training the network, verifying and 

using the network. 

 

2.2.1 Collect data  

 

The reduced-order model is aimed at the stretching process of two-dimensional braided 

twill composites. Considering the needs of digital twin, the input variables in the data set are 

node coordinate data and node load data, and the output data are node stress and strain data. 

Some data of the neural network training set are shown in Table VI. 

 

TABLE VI. Neural network partial training set data 

 

Input data Output data 
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x (mm) y (mm) F (N) Stress (MPa) Strain 

246.03 12.50 10291 167.25 0.40 

246.03 12.50 15405 265.37 0.64 

246.03 12.50 20499 363.29 0.88 

246.03 12.50 25572 461.03 1.12 

246.03 12.50 30625 558.57 1.35 

246.03 12.50 31482 603.70 1.46 

246.03 12.50 31885 611.48 1.48 

246.03 12.50 32321 619.92 1.50 

246.03 12.50 32724 627.70 1.52 

246.03 12.50 33160 636.14 1.54 

246.03 12.50 33563 643.92 1.56 

246.03 12.50 33998 652.34 1.58 

246.03 12.50 34398 660.10 1.60 

246.03 12.50 34833 668.49 1.62 

246.03 12.50 33400 657.84 1.59 

246.03 12.50 30522 585.24 1.42 

 

2.2.2 Create and configure network 

 

Create a BP neural network model, which is a feed forward neural network model 

composed of input layer, hidden layer, and output layer. First, enter the data volume ratio of the 

training set, validation set, and test set, and then enter the number of hidden layer neurons to 

complete the network configuration. The ratio used in this model is 70%: 15%: 15%, and the 

number of neurons is 10. Feed forward networks usually have one or more hidden layers 

composed of neurons, followed by an output layer composed of linear neurons. A multi-layer 

composed of neurons with a non-linear transfer function allows the network to learn the non-

linear relationship between input and output variables. The linear output layer is most 

commonly used for function fitting (or nonlinear regression) problems. 

2.2.3 Train the network 

 

There are three commonly used training algorithms in BP neural network training: B-R [15], 

L-M [16], SCG [17]. Where, B-R expresses its parameters in probability distribution to provide 

uncertainty estimation. The algorithm has longer calculation time, but its calculation is more 

accurate. L-M is the most widely used nonlinear least squares algorithm which uses gradients 

to solve the maximum (minimum) value. When calculating with a computer, the algorithm 

occupies much memory and supports fast calculation. SCG is a method between the steepest 
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descent method and the Newton method, which only needs the first derivative information. Its 

advantages include small storage amount, step convergence, and high stability, but its 

calculation accuracy is relatively poor. Table VII shows the prediction data of the three 

algorithms and the multi-scale high-fidelity digital model data. 

 

 

TABLE VII. Three algorithms for response data 

 

Stress (MPa) Strain 

Time B-R L-M SCG MFE Time B-R L-M SCG MFE 

60.0 66.88 70.48 81.86 98.51 60.0 0.17 0.92 -3.65 0.24 

120.0 165.03 165.12 166.72 196.81 120.0 0.41 0.80 -3.01 0.48 

180.0 265.09 264.57 250.13 294.93 180.0 0.65 0.71 -1.70 0.71 

240.0 363.04 361.46 355.67 392.85 240.0 0.89 0.74 -0.14 0.95 

300.0 461.79 455.34 454.08 461.27 300.0 1.13 0.98 0.65 1.12 

360.0 576.75 574.69 575.34 588.10 360.0 1.45 1.39 1.07 1.42 

370.2 596.51 598.82 597.57 604.67 370.2 1.50 1.50 1.13 1.46 

375.0 606.56 609.72 607.61 612.46 375.0 1.52 1.55 1.16 1.48 

380.2 620.38 620.95 618.04 620.90 380.2 1.54 1.60 1.19 1.50 

385.0 636.92 630.73 627.21 628.69 385.0 1.55 1.64 1.22 1.52 

390.2 647.79 640.58 636.56 637.12 390.2 1.56 1.69 1.25 1.54 

395.0 650.14 649.01 644.63 644.91 395.0 1.58 1.73 1.27 1.56 

400.2 655.01 657.42 652.71 653.36 400.2 1.60 1.77 1.29 1.58 

405.0 661.05 664.58 659.53 661.15 405.0 1.62 1.80 1.31 1.60 

410.2 667.77 671.80 666.30 669.45 410.2 1.63 1.84 1.33 1.62 

415.0 649.19 645.68 641.44 710.24 415.0 1.57 1.71 1.26 1.73 

417.8 574.37 571.76 572.61 587.79 417.8 1.44 1.38 1.06 2.21 

 

Fig 5(a) shows the strain error curves of the predicted values of the three algorithms and the 

multi-scale high-fidelity digital model. Fig 5(a) shows the stress error curve of the predicted 

values of the three algorithms and the multi-scale high-fidelity digital model. For strain 

prediction, B-R demonstrates obvious advantages, and the three algorithms have similar 

prediction accuracy in stress prediction. The average error of the three algorithms in predicting 

stress and strain is shown in Table VIII. Considering the stress and strain, the average error of 

the stress and strain predicted by B-R is 5.03% and 7.19% respectively. Therefore, it is 

appropriate to use the B-R training data to establish a neural network reduced-order model. 
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(a) 

 
(b) 

 

Fig 5: three algorithm response data error curves: (a) strain error curves, and (b) stress error 

curves 

 

TABLE VIII. Average error of response data for three algorithms 
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Algorithm properties B-R L-M SCG 

Average error of stress prediction data 5.03 4.86 4.62 

Average error of strain prediction data 7.19 29.92 169.59 

 

2.2.4 Verify and use the network 

 

The stress-strain curves predicted by the neural network reduced-order model and the multi-

scale high-fidelity digital model established herein are shown in Fig 6. The MFE curve shows 

the prediction data of the multi-scale high-fidelity digital model, and the NET curve shows the 

prediction data of neural network reduced-order model. The predicted value of the established 

neural network reduced-order model and multi-scale high-fidelity digital model has the 

maximum error when the strain is 1.77%, the maximum error is 5.64%, indicating that the 

neural network reduced-order model established by the B-R training data has sufficient 

prediction accuracy. 

 

 
Fig 6: comparison between multiscale finite element model predicted and reduced order model 

predicted stress-strain curves 

 

III. CONCLUSION 

 

This paper investigates multi-scale modeling and neural network reduced-order model of 

the composite structure, and the following conclusions are drawn: 
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In the multi-scale modeling of composite structure, compared with the theoretical model 

calculation, multi-scale model homogenization calculation result has higher calculation 

accuracy for axial elastic modulus, and the prediction error of other elastic parameters is also 

within a reasonable range. 

 

Seen from the perspective of macro stress-strain curve, the initial stiffness predicted by the 

multi-scale high-fidelity digital model and the neural network reduced-order model is in good 

agreement with the experimental value. When the matrix has initial damage and the structure 

exhibits severe nonlinearity, the prediction data of the multi-scale high-fidelity digital model 

and the neural network reduced-order model deviates from the real test data. The maximum 

error between the prediction data and the experimental data of the multi-scale high-fidelity 

digital model is 13.20%, and the average error of the three experiments is 9.92%, indicating 

that the digital model can accurately describe the composite structure and meet the 

requirements for digital twin modeling of composite structures. 

 

The maximum error in predicted data between the neural network reduced-order model and 

the multi-scale high-fidelity digital model is 5.64%. The reduced-order model enables sufficient 

data accuracy under the premise of real-time data prediction of digital twin modeling. 
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