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Abstract: 

Through research, the occurrence and distribution law of faults are determined, the causes of 

complex fault block groups and the distribution characteristics of remaining oil are studied, 

and the development effect of complex fault block reservoirs is improved. The geological 

conditions of Weigang Oilfield, especially the characteristics of fault structures, are extremely 

complex. Determine the types and combination styles of faults, restore micro-geological 

structures as accurately as possible, and clarify the distribution of underground surplus 

resources. 
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I. GEOLOGICAL SURVEY 

 

Nanxiang basin is a Mesozoic-Cenozoic superimposed rift type oil-gas basin developed in 

the East Qinling fold belt, and Nanyang sag is a secondary structural unit of Nanxiang basin. 

Nanyang sag is divided into two structural zones with different characteristics, the south sag 

can be divided into three local structural zones: Tanggang-Gaozhuang fault anticline structural 

zone, Donnan fault structural zone, Niusanmen sag zone, Weigang-Beimazhuang fault nose 

structural zone and Dongzhuang sag zone. Weigang Oilfield is located in 

Weigang-Beimazhuang fault nose structural belt. 

 

The target blocks in this study area are Wei ⅰ and ⅱ fault blocks in Weigang Oilfield. 

Structure location: 1) South of No.1 fault, on the Weigang-Beimazhuang fault nose structural 

belt in the south of Nanyang sag, the reservoir type is a complex fault block oil field with 

structural-lithologic reservoirs, and the lithology is mainly siltstone and fine sandstone [1-3]. 
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II. STRUCTURAL CHARACTERISTICS 

 

Nanyang sag belongs to a relatively independent faulted structural unit in Nanxiang basin. 

Nanxiang basin is located in Qinling orogenic belt. It is a Mesozoic-Cenozoic continental oil 

and gas-bearing faulted basin developed in the late Yanshan period, and has experienced two 

development periods: faulted depression and depression. The basin is divided into Qinling fold 

belt and Dabie Mountain fold belt, which are intermountain fault basins. The periphery of the 

basin is controlled by faults. The total area of Nanxiang basin is 17000km
2
, including Biyang, 

Nanyang and Xiangzao depressions [4,5]. 

 

There are more than 80 faults in Weigang Oilfield, including 6 main faults. According to the 

relationship between cross-section dip and general stratigraphic dip, the main faults in this area 

can be divided into two types: reverse normal faults and co-directional normal faults. The 

division of syndromic and reverse faults is of special significance [6]. Syndromic faults may 

change the occurrence of strata, make the strata dip in the faults opposite to the original, and 

the high point of fault block traps will move to the dip direction of the general strata dip. 

Reverse fault will not change the inclination of strata, so the high point of fault block trap is 

still in the upward dip direction of strata. Both of them play an important role in guiding the 

deployment of high-yield oil wells [7-9]. 

 

2.1 Fault Identification and Combination 

 

Using orthogonal tangent to identify faults, according to fault anomaly analysis and 

preliminary interpretation of horizons, cut any line along the direction perpendicular to the fault, 

and find the breakpoint position. Multi-section tangents are used to analyze other tangents 

parallel to this arbitrary line, and orthogonal tangents are used to identify and implement 

low-order faults. Observe the strike of fault through continuous seismic profile, and identify the 

size and extension direction of fault [10,11]. (figure 1). 
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Fig 1: combination method of well seismic and orthogonal tangent fault 

 

There are 64 large and small faults in Area 1-2 of Weigang Oilfield in Nanyang Sag, all of 

which are tensile faults, and their strike is mainly in the northeast and northwest directions. The 

cutting action divides a complete structure into many fault blocks. In each fault block (that is, 

one side of the section), the relationship between the interfaces of various strata is relative, and 

the thickness is stable or gradual. However, between different fault blocks (i.e., on both sides of 

the section), according to the height relationship and thickness change of the same stratum 

interface, the breakpoints of the same fault can generally be combined [12,13]. 

 

There are four main types of fault association relations in the depression: Y-shaped 

association, anti-Y-shaped association, Y-and anti-Y-shaped compound type and stepped type. 

(figure 4) The plane combination is zigzag, horsetail or broom, parallel and echelon. Y-shaped 

combination is the result of oblique shear and gravity on the stratum above shovel-shaped fault. 

The secondary fault intersects with the boundary fault in reverse, and is often associated with 

rollover anticline (Figures 2a and 3). This kind of assemblage develops in the central 

depression zone. The inverted Y-shape is caused by the joint action of the rotation of the section 

itself and the gravity of the overlying strata [14]. The inverted Y-shape is formed by the 

intersection of the secondary syncline fault and the boundary fault (Figures 2b and 3). The main 

fault plane is slow and the secondary fault plane is steep, which is easy to form a broken nose 

structure. This kind of assemblage develops in Weigang nose structural belt. Step-like fault 

combination is a series of profile representations of lateral or overlapping oblique faults with 

consistent strike and similar inclination (Figure 2c). This kind of assemblage is developed in 

the south of the depression, the northeast of the fault belt and Zhangdian nose structural belt. 

breakpoint
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The "Y" and anti-"Y" compound type is easy to form broken anticline and broken nose 

structures, and its plane combination is broom-shaped, and the order of all levels on the section 

is clear (Figure 2d), and this kind of combination is relatively developed in the transition area 

of uplift and depression. There is a Y-type combination pattern between No.1 fault and No.2 

fault in the study area [15]. Through fault combination, it is found that Weigang Oilfield is 

dominated by Y-type combination fault and anti-Y-type combination model (Figures 3 and 4). 

Thereby establishing a three-dimensional spatial combination model of faults in the target 

stratum in the study area (Figure 5) [16]. 

 

 
 

(a) Y-type combination      (b) anti-Y-type combination  

 

(c) stepped fracture combination (d) Y-type and anti-Y-type composite combination. 

 

Fig 2: combination style of fault section in Nanyang sag 
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Fig 3: fault combination model 

 

  
Fig 4: Y-type combination model of No.(1) fault and No.(2) fault  

Fig. 5 fault combination model of Weigang Oilfield 

 

2.2 Influencing Factors and Genetic Types of Complex Fault Groups 

 

The causes of the deformation of the Weigang nose structure fault are mainly related to 

three factors, namely, the mantle uplift, the change and distribution of the overburden 

properties, and the later tectonic movement. 

 

I. Mantle uplift is related to lithospheric stretching and thinning. 

 

II. It is related to uneven distribution of lithology, differential compaction and gravity. In 

the sand-mud alternating zone, normal faults are easy to form due to differential compaction, 

and the load of overlying strata promotes the formation and activity of faults. 

 

Complex fault block group is a three-dimensional structural combination caused by 

long-term tectonic evolution, and its origin mainly depends on the geometric shape of main 

basement faults and boundary faults of fault blocks and their mutual cutting relationship. On 

the one hand, the displacement of the main basement fault causes the deformation of its two 

fault blocks and changes the local stress state; On the other hand, it induces the development of 

secondary regulating faults, leading to the development of different types of complex fault 

block groups. Therefore, the geometric shape and movement mode of the main basement faults 

not only control the basic structural characteristics of the basin, but also control the formation 

and evolution of complex fault block groups with different characteristics [17,18]. 

 

In the graben formed by two opposite main faults, the graben blocks are further cut into 

fault steps and grabens due to the development of the sequence of their respective derived 
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faults or later faults. On the plane, the boundary main faults of the graben are nearly parallel, or 

oblique or argumentative, while the No.1 fault and No.2 fault are nearly parallel in the main 

area (Figure 6), and the internal secondary faults are generally parallel to their control faults. 

On the profile, a secondary graben is generally formed in the middle of the graben, while fault 

steps are formed on both sides, and the strata are gradually lowered from both sides to the 

middle (Figure 7). This kind of fault block group is mainly developed in the main fault drop 

plate inside the depression [19-21]. 

 

 
 

Fig 6: plane distribution characteristics of complex fault block groups of compound graben type 

 

 
 

Fig 7: distribution characteristics of vertical faults in complex fault block groups of compound 

graben type 
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III. STUDY ON THE DISTRIBUTION OF REMAINING OIL IN AREA 1-2 OF 

WEIGANG 

 

3.1 Fine Geological Modeling 

 

3.1.1 Establish the model 

 

Based on the imported fault data, the fault model of the work area is established, and the 

fault trend in the work area is mainly NNW. According to the actual situation of work area, well 

pattern density and so on, the plane step length of a single grid is 10m×10m, and the number of 

plane grids is 595× 340. There are 22 sedimentary units in the vertical direction, and finally the 

number of grids in three directions is 595×340×22. 

 

The model of permeability and effective thickness is established with phase model as 

constraint, and the algorithm adopted is sequential Gaussian model. Attribute modeling mainly 

consists of three steps: attribute discretization, data analysis and attribute modeling [22]. 

 

3.1.2 Numerical simulation 

 

The fluids in the strata in the study area mainly include oil and water phases. The basic 

reservoir parameters mainly include original formation pressure, high-pressure physical 

properties of rocks, water and crude oil, etc. Numerical simulation of basic reservoir 

parameters such as high-pressure physical properties of rocks and fluids mainly refers to coring 

well data and laboratory experiment results, as shown in Table I [23]. 

 

TABLE I. Basic reservoir parameter table for numerical simulation of oil layer in the study 

area 
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3.2 Reservoir heterogeneity in area 1 and 2 of Weigang oilfield 

 

According to the static characteristics of Area 1-2 of Weigang Oilfield, reservoir attribute 

modeling is established, including porosity model and permeability model. According to Table 

II, the permeability of the whole region is unevenly distributed, with an average permeability of 

53mD and a coefficient of variation of permeability of 0.81, with strong heterogeneity. 

Vertically, the coefficient of variation of permeability of each layer is between 0.7 and 0.95, 

and the difference between layers is serious. Among them, the sand bodies are well developed, 

the oil-bearing area is large, and the layers with good physical properties are H2I1, H2II10 and 

H2II15 [24,25]. 

 

TABLE II. Physical parameters of each layer 
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1 H2Ⅰ1 40.2 0.7300 
0.22

44 

135 97 0.72 

2 H2Ⅰ2 7.06 0.6720 
0.20

27 

103 84 0.82 

3 H2Ⅰ3 4.83 0.7189 
0.17

36 

82 70 0.85 

4 H2Ⅰ4 3.41 0.7532 
0.20

69 

108 91 0.84 

5 H2II5-6 32.51 0.7398 
0.21

07 

118 99 0.84 

6 H2II7 21.34 0.6857 
0.18

61 

116 93 0.80 

7 H2II8-9 35.86 0.6833 
0.19

24 

120 101 0.84 
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8 H2II10 81.45 0.7106 
0.23

45 

103 82 0.80 

9 H2II11 13.4 0.6411 
0.19

74 

103 91 0.88 

10 H2II12 44.74 0.7229 
0.23

11 

148 101 0.69 

11 H2II13 6.14 0.7110 
0.19

94 

131 106 0.81 

12 H2II14 17.18 0.6910 
0.23

53 

124 99 0.80 

13 H2II15 80.43 0.7324 
0.21

25 
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62 
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15 H2III20 4.85 0.6629 
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02 

118 82 0.70 

16 H2III21 12.09 0.7418 
0.17

19 

97 82 0.85 

17 H2III22 23.78 0.7483 
0.19

11 
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18 H2III24 19.09 0.6508 
0.15

47 

84 72 0.85 

19 
H2III25-2

7 
83.28 0.6979 

0.22

89 

82 74 0.90 

20 H2III30 9.01 0.6690 
0.23

38 

78 74 0.95 

全区 575.43 0.7151 
0.20

19 

112 112 0.81 

 

3.3 Distribution Characteristics of Remaining Oil 

 

The influence of sedimentary environment and sedimentary microfacies of sand body shape, 

different oil layer properties, different production degree and different remaining oil 

enrichment degree. Therefore, according to the permeability and oil saturation, the distribution 

of remaining reserves in each sedimentary unit is counted [26]. (Figure 8, Figure 9). 
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Fig 8: remaining reserves in different permeability regions 

Fig 9: remaining reserves in different oil saturation areas 

 

Among the remaining reserves in permeability classification statistics, the remaining 

reserves with permeability in the range of 0 MD to 50 MD are 2,779,400 tons, accounting for 

the largest proportion, accounting for 66.66% of the regional remaining reserves. However, the 

remaining reserves in the permeability range of 150 MD to 200 MD are 103,000 tons, 

accounting for 2.47% of the regional remaining reserves. The remaining reserves in the 

numerical model area tend to decrease with the increase of permeability. It shows that the water 

flooding effect of high permeability layer is good and the remaining oil potential is small. The 

remaining oil is mainly distributed in low permeability areas [27-29]. 

 

In the oil saturation classification statistics of remaining reserves, the remaining reserves in 

the range of So ≥ 0.6 are 2,945,200 tons, accounting for 70.71% of the regional remaining 

reserves, which is the main target for tapping the potential of remaining oil. However, the 

remaining reserves in areas with oil saturation between 0.2 and 0.4 are only 5.48, accounting 

for 1.32% of sedimentary units. The remaining oil is not enriched in the area where so is less 
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than 0.2. Therefore, the middle and high oil saturation areas should be the main targets for 

tapping the potential of remaining oil. 

 

IV. CONCLUSION 

 

I. Fine contrast breakpoint identification technology: 2D and 3D linkage breakpoint 

identification, establishing 3D breakpoint distribution map, improving the identification 

accuracy of spatial breakpoints, and completing the whole area identification work. 

Identification of faults and combined faults by using seismic data-aided detection technology. 

 

II. Establish the geological model and fault model of the study area, and complete the 

structural modeling, porosity, permeability and original oil saturation model according to the 

logging curve. The actual geological reserve of the numerical model in the study area is 

579.22×104t, and the fitted geological reserve is 575.43×104t Complete the production 

dynamic fitting of the whole area and single well, and the fitting indexes include water cut, 

oil production, liquid production and water injection, etc. The permeability of the whole 

region is unevenly distributed, with an average permeability of 113mD and a permeability 

variation coefficient of 0.81, with strong heterogeneity. Vertically, the coefficient of variation 

of permeability of each layer is between 0.65 and 0.95, and the difference between layers is 

serious. Among them, the sand bodies are well developed, the oil-bearing area is large, and 

the layers with good physical properties are H2Ⅰ1, H2II10 and H2II15. 

 

III. The formation and distribution of remaining oil in the study area are mainly 

controlled by sedimentary facies, structure, reservoir heterogeneity and well pattern 

conditions. The remaining oil is mainly controlled by fault area and imperfect injection and 

production. 
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