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Abstract:

The numerical scheme of generalized fractional PD control system is established by using shift
fractional Legendre function. The original differential equations model is transferred into a
system of algebra equations by incorporating fractional differential operational matrices in the
Caputo sense. Several test issues are presented to ensure that the proposed method is effective.
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I. INTRODUCTION

Fractional calculus is frequently employed in mathematical modeling of physical responses,
and its benefits have been demonstrated in a variety of scientific and engineering fields[1-8]. In
the control process, the proportional-integral-derivative (PID) algorithms controller is the most
preventive and simple closed-loop controller. To implement PID control, the deviation between
the input and output values must be calculated, and the controlled device must be controlled
using a linear combination of the deviation based on percentage, integral, and differential. The
PID has three adjustable gains that need to be adjusted to achieve the desired response. In this
paper, the general fractional PD control system is given as follows:

2D X (t)+4,D "X (t) +... 4+ 4D P X (1) =y,D Y (t)+7,.D ™Y (t)+...+yD *Y(t) (1)
WhereD " =, D,”, and p,>p,,>-->p,20,0,>0,,>...>0, =0, p,,y are arbitrary

numbers. The variable s is described by Laplace transform of Eq. (1) as
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_ X(S) _ 7m5qm +7m715qm71 +"'+7/osq0

G(s)= 2
(5) Y(S)  AST A 8™ A+ AySP @

Initial conditions shall be met:
X (0)=X'(0)=---=x"Y(0)=0. ©)

Several analytical and numerical methods for solving various fractional PID, Pl or PD
control systems are presented. Yumuk, et al. [9] utilize the Bode’s ideal transfer function
discuss the analytical design of fractional PID controller. Mandi¢, et al. [10] use the
D-decomposition method obtain the dominant pole placement with fractional PID controller.
Seyed, et al. [11] give the design of fractional PID controller for power system load frequency
control (LFC) by using imperialist competition algorithm. Based on the above discussion, a
numerical scheme is formulated to solve fractional-order PD control system using the shifted
fractional Legendre functions.

The research paper is mainly composed of the following parts: Section 2 introduces basic
definition of fractional calculus, and the shifted fractional Legendre function and its fractional
differential operation matrix is given in Section 3. In Section 4, the solving process is
established using the shifted fractional Legendre functions. Section 5 offers several numerical
examples in order to demonstrate the effectiveness of method proposed. In Section 6,
summarize the full text and draw a conclusion.

II.FRACTIONAL CALCULUS

In this part, the main points of fractional calculus theory will be introduced.

Definition 1. The definition of Riemann-Liouville formula of fractional differential
operator is stated as

p>0, r-1<p«<r,

1 d" s X(s)
d
[(r—p)dt’ IO (s—¢)""™" >
d"X(s)
ds

D."X (s)= (4)

p=r,s>0,

Definition 2. The Caputo formula of fractional differential operator is given by
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1 s XU(s
r'(r- J.O (p—?+1dg! r-1< p<r;
D x (s)={ (T=P) 7 (s-5) .
d X (s) o
dt’ p=r, ,

For p>0,0>-1and constantV , Caputo fractional derivative has the following basic

properties:
(1) DV =0;
0 forceNy,and o <[ p];
() DFs”=y T(o+1) s, forceNyand o>[ploroceNyand o> p |;

F(0'+1— p)

(3) D p(z %X, (s)) > %D "X, (s), where{x}  are constants.

i=0 "1

Definition 3. (Generalized Taylor formula). Suppose thatD *X (s)<[0,1]fork=0,1....,r -1,
then

r-1 m
DX (0")+————D "X (&), 6
k:OF kp+1 ( )+F(rp+1) (¢) ©)
Where0< & <5s,Vse[0,1], also, one has
r-1 p
DX (0) <P ——— 7
k:OF kp+l ( ) "T(rp+1) )

WhereITf >[D ®X (£)|.
When p =1, the generalized Taylor’s formula is the best classical Taylor’s formula.

I11. SHIFTED FRACTIONAL LEGENDRE FUNCTIONS
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In this part, the main points of shifted fractional Legendre functions will be introduced.

3.1 Generalized Fractional Legendre Functions

Fractional Legendre functions (FLFs) is defined by the transformingt=v"and p>0 on
shifted Legendre polynomials. The fractional Legendre functions are denoted by
FLka(v),k =1,2,...They are the special solutions of the normalized eigenfunctions for the

Liouville problem [12]

((v—=v**)FLE? (v)) + pk (K +1)v " FLF, (v) =0,v €[0.1]. )

The function FLE (v ) is in a recursive form, as follows

2k +1)(2vP -1
FLFkﬁl(v):( i(ﬂv )FLka (v)—ﬁ FLF®, (v), k=12,... )
FLF (v)=1FLFP? (v)=2v" -1, (10)

Then the analytical form FLF? (v) of degree kv is derived as follows

k
FLR? (V) = Zws,kvs", k=0,12,..., (11)

s=0

_ k+s |
Wherea, , = CY(ks)t g FLF?(0)=(-1)" ,FLF? (1) =1.

(k—s)!(s!)2

The FLFs are orthogonal to the weight function w® (v) =v"™on the interval[0,1], then the

orthogonal condition is

! p p p — 1
[ FLRS (v)FLR? (v)wP (v)dv = (2n+1)p5”m’ (12)
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Where g, is the Kronecker function.

In order to use FLFs on the interval [0,H], the generalized fractional Legendre functions
(GFLFs), devoted by FLF™ (t), is defined by introducing the change of variablet=vH . So
the GFLFs have recurrence formula as follows

2k +1)(2(t/H)’ -1
( + )( (/ ) )FLFkHP (t)_L FLFKTE (t), k=1,2,, (13)
k+1 k+1

FLES(1)-

Where FLF,® (t) =1, FLE™ (t)=2(t/H )" -1.
The analytical form of the GFLFs FLF,™ (v) of degree kp is given by

[ sv
FLE™ (1) = 2 @, % k=12,... (14)
s=0

Theorem 1. The GFLFs are orthogonal to the weight functionw” (t)=t""on the interval

[0, H ] , therefore the orthogonally condition is

H H°P
FLE™ (t)FLF,® (t)w® (t)dt = ———5,,. 15
J.O n () m ()W() (2n+l)p5mn ( )
Proof. With j:FLan(v)FLFm" (v)wp(v)dv:m@]m, where &, is the Kronecker

function, letv = % , then

1 H t t t)1
[ FLEP(v)FLR? (v)w? (v)dv = | " FLF; (ﬁ] FLF? (ﬁjwp (ﬁ]ﬁdt

H 1 1
=| FLE™(t)FLF® (t)wP (t)—dt= Oons
Jy FLE® (LR ()W (0 0= gy O

(16)
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H HP
FLE™ (t)FLE™ (t)wP (t)dt=——— 5. 17
J; FLE® (FLE (0w (= " (17)

The theorem is confirmed.

3.2 Function Approximation

Suppose X (t) e L*[0,H], it can be extended by GFLF as follows:

X(t)= iXiFLFk“p (1), (18)
k=0
Where X, is obtained by
%, _wj FLE™ (t) X (H)w? (t)dt, k=01,2,... (19)

If truncated series are considered in Eq. (10), then
X(t)~ X, (t)=> % FLE®(t)=X"¥(t), (20)

Where
X =y, R %y ], W (1) =[ FLR® (1), FLR™ (1),..., FLE} (1) ]. (21)

Theorem 2. Suppose D*X(t)eC[0,H] for k=012,....,r-1(2r+1)p=1 and
®f =span{FLF,™ (t), FLF® (t),...,FLF (t)}. 1 X, (t) = X"¥(t) is the best approximation

to X (t)from®? , then the error bound is expressed as follows

HP
)], <

x®-x I(rp +1) (2r+1) p

(22)

WhereITf >[D "X (t)|,t[0,H].
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Proof. Considering the generalized Taylor formula

r-1 tkp trp

X(t)=ZWDkpX(O*)+1_(T+1)D”’X(§), (23)

k=0

Where0 < & <t,t €[0,H], with Definition 3

S ey (o t”
X(t)—émD X (0")<m m (24)

Since X, (t)=X"¥(t) is the best approximation to X(t) from ®° , and

ki
> _ Y pey (0")er1!, hence

0T (kp+1)
r-1 H2
X < s —— | t*"t"dt
X=X, 0 2 () F o0 X 0 s .
< Hi J‘H t(2r+1 Lyt = HiH P .
(rp+1)"° F(rp+1)2(2r+1)p

Square roots prove the theorem. From the error bound, we can see the approximation
convergence of GFLFs to the function X (t).

3.3 GFLF operational matrix for derivatives

As the derivative of the function vector ¥ can be approximated
D ¥ (t)~D"¥(t), (26)
DPis defined as the GFLFs operational matrix of derivative.

Theorem 3. Supposingly, DPis therxr GFLFs operational matrix of Caputo fractional
derivative of ordery >0, p>y/2, pgl], then the element of D" are given as follows
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r-1r-1 . _ k J r (Sp +1)
d, =(2]+1)ph™” ! , 27
e}y, =(21+1)p SZ(:‘UZ_(;ZU“"ZUS’k1"(S|0—7+1)(S+ p+l)p—7y &7
Where
0, spell,and sp<y,
L= 28
Pek {w;k =w,,, spell,and sp=>|y|orspell  and sp>y, (28)

Proof. See [12].

IV. NUMERICAL SIMULATION

This section uses the fractional Legendre function of derivatives to convert the initial
problem into a system of linear algebraic equations with initial conditions.

D ™ X (t) ~; D, (X" (1))~ X D™¥(t), (29)
D ™+ X (t) ~; D, (X"¥ (1))~ X' D™ ¥ (1), (30)
D "X (t)~; D,” (XT;I’(t)) ~X'D"¥ (t), (31)
and
D Y ()~ D,* (Y'¥(t))~ Y D" ¥(t), (32)
D “2Y (t) ~ D (Y'P (1))~ YT D" ¥ (1), (33)
D ®Y (t)~{ D" (\.(T‘I’(t)) ~Y D™ (t), (34)

WhereY can be obtained from Eq. (11). Substituting Egs. (17)-(22) into Eq. (1), then

X DY (t)+ 2, X DM (t)+---+ L, X D™ (1)

35
= 7Y DY (t)+ 7, Y D™ W () 4+ 7, Y DO (1) (3
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The flow chart of the provided algorithm is given in Fig. 1.
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Introduce the definition of
caputo fractional derivative

Y

Define Shifted Legendre functions
v

¥

Form the main system of regional equations

Solve the system of above equations by
dispersing the unknown variables and get the
coefficients matrix and get the coefficients

v

Substitute them into the approximate
solution expression to get the numerical

End
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Fig.1: the flow chart of the algorithm

V.NUMERICAL EXAMPLES

Test problem 1. Considering the following fractional PD control system
2D °X (t)+19D *°X (t)+35D **X (t)+79D **X (t) =58D > (t)+90D *?Y (t)+117Y'(t) (36)

Where the input signal isY (t)=sin(t). Whenm=4and5, the displacement of the output

signal and the phase position are illustrated in Fig.2 and Fig.3. From these two figures, it can be
concluded that the numerical results are consistent whenm=4and5, which shows that the
proposed method is effective and accurate.

Displacement of output signal

[

4 - -
0 10 20 0 & 50

Time

Fig.2: the displacement of output signal withm=4and5

The speed of the output signal

Displacement of output signal
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Fig.3: the phase position of output signal withm=4.

Test Problem 2. Considering the following fractional PD control system
D **X (t)+8D X (t)+26D 23X (t)+73D L2X (t)+90D %X (t)=30Y'(t)+90D O3y (t), (37

where the input signal isY(t)=sin(t2), whenm=4and5, the displacement of the output

signal and the phase position are shown in Fig.4-Fig.5.

Dusplacament of output signal

‘
Time

Fig.4: the displacement of output signal withm=4and5

The speod of the outped signal

D4 D2 0 02 04 06 04 1
Disp@acement of output gignal

Fig.5: the phase position of output signal withm=4.

Test problem 3. Considering the following fractional PD control system
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D ¥2X (t)+5D X (t)+9D **X (t)+7D **X (t)+2X () =Y (t) (38)

Where  the input signal is  Y(t)=sin(zt)/(xt) , Y(t)=2e"" and
Y(t)=1t>0;Y (t)=0,t <0. Whenm=4, the displacement and phase position for three kinds

of signals are shown in Fig.6-Fig.7.

Test problem4. Considering the following fractional PD control system
D #PX (t)+37D*PX (t)+79D PX (t)+100X (t)=Y (t) (39)

Where the input signal is Y(t):—[400(1—e’2°t)+1003in(67rt)}, When m=4 |,

p=1,0.8,0.6,0.4, the displacement of output signal is indicated in Fig.8 and the phase position
is suggested in Fig.9.

018

| —— Samping signa
D015 Unit siep sional
- Unilateral expenenbal oscay signal
= 014
s 1

008}

Fig.6: the displacement of three input signals with sampling signal, unit step signal and unilateral

exponential decay signal whenm=4
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Displacemaent of output signal

Fig.7: the phase position of three input signals with sampling signal, unit step signal and

unilateral exponential decay signal whenm=4
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Fig.8: the displacement of output signals with p=1,0.8,0.6,0.4
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Fig.9: the phase position of output signal with p=1,0.8,0.6,0.4
VI. CONCLUSION

In this paper, the researchers proposed a numerical scheme in an effort to solve the
fractional PD control system by using the shift fractional Legendre function. The original
system is converted into an array of linear algebraic equations by introducing the differential
operation Matrix. Numerical examples show that the method is effective.
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