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Abstract: 

The numerical scheme of generalized fractional PD control system is established by using shift 

fractional Legendre function. The original differential equations model is transferred into a 

system of algebra equations by incorporating fractional differential operational matrices in the 

Caputo sense. Several test issues are presented to ensure that the proposed method is effective. 

Keywords: Fractional PD control system, Shifted fractional Legendre functions, Differential 
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I. INTRODUCTION 

 

Fractional calculus is frequently employed in mathematical modeling of physical responses, 

and its benefits have been demonstrated in a variety of scientific and engineering fields[1-8]. In 

the control process, the proportional-integral-derivative (PID) algorithms controller is the most 

preventive and simple closed-loop controller. To implement PID control, the deviation between 

the input and output values must be calculated, and the controlled device must be controlled 

using a linear combination of the deviation based on percentage, integral, and differential. The 

PID has three adjustable gains that need to be adjusted to achieve the desired response. In this 

paper, the general fractional PD control system is given as follows: 

 

           1 0 1 0

1 0 1 0
n n m mp p p q q q

n n m mX t X t X t Y t Y t Y t      

       D D D D D D   (1) 

 

Where 0

p c p

tD D , and
1 0 1 00, 0n n m mp p p q q q         , ,k kp  are arbitrary 

numbers. The variable s is described by Laplace transform of Eq. (1) as 
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Initial conditions shall be met: 

        1
0 0 = 0 0.

q
X X X

                          (3) 

 

Several analytical and numerical methods for solving various fractional PID, PI or PD 

control systems are presented. Yumuk, et al. [9] utilize the Bode’s ideal transfer function 

discuss the analytical design of fractional PID controller. Mandić, et al. [10] use the 

D-decomposition method obtain the dominant pole placement with fractional PID controller. 

Seyed, et al. [11] give the design of fractional PID controller for power system load frequency 

control (LFC) by using imperialist competition algorithm. Based on the above discussion, a 

numerical scheme is formulated to solve fractional-order PD control system using the shifted 

fractional Legendre functions. 

 

The research paper is mainly composed of the following parts: Section 2 introduces basic 

definition of fractional calculus, and the shifted fractional Legendre function and its fractional 

differential operation matrix is given in Section 3. In Section 4, the solving process is 

established using the shifted fractional Legendre functions. Section 5 offers several numerical 

examples in order to demonstrate the effectiveness of method proposed. In Section 6, 

summarize the full text and draw a conclusion.  

 

II. FRACTIONAL CALCULUS 

 

In this part, the main points of fractional calculus theory will be introduced. 

 

Definition 1. The definition of Riemann-Liouville formula of fractional differential 

operator is stated as  
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Definition 2. The Caputo formula of fractional differential operator is given by 
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For 0, 1p    and constant V , Caputo fractional derivative has the following basic 

properties: 

 

(1) 0;pV D  
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(3)      
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 D D  where 

0

r

i i
x


are constants. 

 

Definition 3. (Generalized Taylor formula). Suppose that    0,ip X s lD for 0,1, , 1k r  , 

then  
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Where  0 , 0,s s l    , also, one has 
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Where  p rp

r X   D . 

 

When 1p  , the generalized Taylor’s formula is the best classical Taylor’s formula.   

 

III. SHIFTED FRACTIONAL LEGENDRE FUNCTIONS 
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In this part, the main points of shifted fractional Legendre functions will be introduced. 

 

3.1 Generalized Fractional Legendre Functions 

 

Fractional Legendre functions (FLFs) is defined by the transforming pt  and 0p   on 

shifted Legendre polynomials. The fractional Legendre functions are denoted by

  , 1, 2,p

kFLF k  They are the special solutions of the normalized eigenfunctions for the 

Liouville problem [12] 

 

          1 2 11 0, 0,1 .p p p

k kFLF p k k FLF      
                (8) 

 

The function  p

kFLF  is in a recursive form, as follows 
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2 1 2 1
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       (9) 

 

   0 11, 2 1.p p pFLF FLF                         (10) 

 

Then the analytical form  p

kFLF  of degree k is derived as follows 
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kp p
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The FLFs are orthogonal to the weight function   1p pw    on the interval  0,1 , then the 

orthogonal condition is 
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Where
nm is the Kronecker function. 

 

In order to use FLFs on the interval  0,H , the generalized fractional Legendre functions 

(GFLFs), devoted by  Hp

kFLF t , is defined by introducing the change of variable t H . So 

the GFLFs have recurrence formula as follows 
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    (13) 

 

Where      0 11, 2 1.
pHp HpFLF t FLF t t H    

 

The analytical form of the GFLFs  Hp

kFLF  of degree kp is given by 
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Theorem 1. The GFLFs are orthogonal to the weight function   1p pw t t  on the interval

 0, H , therefore the orthogonally condition is 
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Proof. With      
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                  (17) 

 

The theorem is confirmed.  

 

3.2 Function Approximation 

 

Suppose    2 0,X t HL , it can be extended by GFLF as follows: 
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Where kx is obtained by 
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If truncated series are considered in Eq. (10), then 
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Where 
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Theorem 2. Suppose    C 0,kp X t HD for  0,1,2, , 1 2 1 1k r r p    and

      0 1 1span , , , .p Hp Hp Hp

r rFLF t FLF t FLF t  If    T

rX t t X  is the best approximation 

to  X t from p

r , then the error bound is expressed as follows 
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Proof. Considering the generalized Taylor formula 
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Where  0 , 0,t t H   , with Definition 3 
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Square roots prove the theorem. From the error bound, we can see the approximation 

convergence of GFLFs to the function  X t . 

 

3.3 GFLF operational matrix for derivatives 

 

As the derivative of the function vector can be approximated  

    p pt t DD   ,                          (26) 
p

D is defined as the GFLFs operational matrix of derivative. 

 

Theorem 3. Supposingly, p
D is the r r GFLFs operational matrix of Caputo fractional 

derivative of order 0, 2, ,p p     then the element of p
D are given as follows 
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Proof. See [12]. 

 

IV. NUMERICAL SIMULATION 

 

This section uses the fractional Legendre function of derivatives to convert the initial 

problem into a system of linear algebraic equations with initial conditions. 
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WhereY can be obtained from Eq. (11). Substituting Eqs. (17)-(22) into Eq. (1), then 
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The flow chart of the provided algorithm is given in Fig. 1. 
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Fig.1: the flow chart of the algorithm 

 

V. NUMERICAL EXAMPLES 

 

Test problem 1. Considering the following fractional PD control system 

 

             3 2.6 1.4 0.8 2.3 1.22 19 35 79 58 90 117X t X t X t X t Y t Y t Y t     D D D D D D   (36) 

 

Where the input signal is    sinY t t . When 4m  and5 , the displacement of the output 

signal and the phase position are illustrated in Fig.2 and Fig.3. From these two figures, it can be 

concluded that the numerical results are consistent when 4m  and 5 , which shows that the 

proposed method is effective and accurate.   

 

 
Fig.2: the displacement of output signal with 4m  and5  
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Fig.3: the phase position of output signal with 4m  .  

 

Test Problem 2. Considering the following fractional PD control system 

 

             3.5 3.1 2.3 1.2 0.5 0.38 26 73 90 30 90X t X t X t X t X t Y t Y t     D D D D D D ,  (37) 

 

where the input signal is    2sinY t t , when 4m  and5 , the displacement of the output 

signal and the phase position are shown in Fig.4-Fig.5.  

 

 
 

Fig.4: the displacement of output signal with 4m  and5  

 

 

 

Fig.5: the phase position of output signal with 4m  . 

 

Test problem 3. Considering the following fractional PD control system 
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            1.2 0.9 0.6 0.35 9 7 2X t X t X t X t X t Y t    D D D D        (38) 

 

Where the input signal is      sinY t t t  ,   1.52 tY t e and

   1, 0; 0, 0Y t t Y t t    . When 4m  , the displacement and phase position for three kinds 

of signals are shown in Fig.6-Fig.7.  

 

Test problem4. Considering the following fractional PD control system 

 

          2 137 79 100p p pX t X t X t X t Y t    D D D            (39) 

 

Where the input signal is      20400 1 100sin 6tY t e t    
 

, When 4m  ,

=1,0.8,0.6,0.4p , the displacement of output signal is indicated in Fig.8 and the phase position 

is suggested in Fig.9. 

  

 
 

Fig.6: the displacement of three input signals with sampling signal, unit step signal and unilateral 

exponential decay signal when 4m   
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Fig.7: the phase position of three input signals with sampling signal, unit step signal and 

unilateral exponential decay signal when 4m    

 

 
 

Fig.8: the displacement of output signals with =1,0.8,0.6,0.4p   
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Fig.9: the phase position of output signal with =1,0.8,0.6,0.4p   

 

VI. CONCLUSION 

 

In this paper, the researchers proposed a numerical scheme in an effort to solve the 

fractional PD control system by using the shift fractional Legendre function. The original 

system is converted into an array of linear algebraic equations by introducing the differential 

operation Matrix. Numerical examples show that the method is effective. 
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