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Abstract: 

Neuroimaging has been widely used in computer-assisted clinical diagnosis and treatment. In 

particular, multimodal neuroimaging retrieval technology, as an auxiliary technical means, can 

effectively improve the efficiency and accuracy of medical decision-making. However, the 

rapid increase of neuroimaging libraries has brought huge challenges to the rapid and efficient 

retrieval of neuroimaging. Existing image retrieval algorithms, on the other hand, frequently 

fail when applied directly to multimodal neuroimaging databases, because they typically use 

triplet loss functions to capture high-order semantic associations between samples. Triplet loss 

usually can only capture the local semantic similarity between neuroimaging samples. 

However, neuroimaging usually has complex semantic distribution, such as small inter-class 

differences and large inter-modal differences, which results in poor effects of the existing 

method. In order to solve these problems, this paper proposes a deep multimodal 

neuroimaging retrieval method based on adaptive hash semantics. Specifically, by directly 

learning the semantic space of neuroimage semantic tags, the hash network directly learns the 

Hamming semantic space distribution of each neuroimage from the semantic tags, thus 

avoiding the disadvantage of triplet loss. Meanwhile, the method directly uses category 

semantic tags for learning, which can achieve great learning effect. Widespread experimental 

results show that our method can generate effective hash codes and enable the most advanced 

multimodal neuroimaging retrieval performance. 

Keywords: Dultimodal neuroimaging, Hash learning, Medical image retrieval, Adaptive, 

Auxiliary diagnosis. 

 

I. INTRODUCTION 

 

Neuroimaging analysis is of great help to modern clinical analysis and automatic diagnosis 

research[1]. Existing neuroimaging captures and records human medical data in digital image 

formats, such as magnetic resonance imaging (sMRI) and positron emission computed 
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tomography (PET). At present, neuroimaging has been widely used in computer-aided clinical 

diagnosis and treatment[2]. However, interpreting neuroimaging data typically necessitates a 

great deal of hands-on expertise and professional knowledge, and differences among observers 

can influence the diagnosis and treatment outcome. Previous cases, that is, visually identical 

scans and accompanying treatment data, are presented to doctors in clinical practice to help 

clinical decision-making. This makes clinical case reasoning and evidence-based medicine 

decision-making easier. In particular, multimodal neuroimaging retrieval technology, as an 

auxiliary technical means, can effectively improve the efficiency and accuracy of medical 

decision-making[3-5]. In order to prove the assistance of neuroimaging retrieval to clinical 

diagnosis through examples, as introduced in the literature[5], a comparative experiment was 

conducted on newly recruited radiologists. As shown in Fig 1, there are two images related to 

nodules. Observe whether these doctors accurately determine benign and malignant nodules by 

referring to the neuroimaging retrieval system. Through experimental comparison, it is found 

that relying on the neuroimaging retrieval system can significantly improve the judgment 

accuracy. Content-based neuroimaging retrieval is a kind of instance-level image retrieval, 

which belongs to long-term research of neuromedical images. In the practice of observer 

research, the benefits of instance-level picture retrieval for medical image screening and 

diagnosis may be confirmed. 

 

            
 

(A) Benign nodules on X-ray chest film       (b) Malignant nodules on X-ray chest film 

 

Fig 1: samples of benign and malignant nodules 

 

The neuroimaging retrieval system demands good scalability and efficient retrieval 

performance. Considering the reasonable balance between search effect and computing 

performance, hash learning methods have attracted more and more attention. Hash learning 

converts content-based neuroimaging search into hash code-based retrieval by encoding 

neuroimaging into a hash code in the Hamming space. Existing hash learning approaches are 

largely classified into two types according on whether supervised information is incorporated in 
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the learning stage: unsupervised hash learning[6] and supervised hash learning[7]. 

Unsupervised hash learning method is usually used to learn the hash mapping function from the 

original feature space to the Hamming space by using topological information, original data 

structure, and data distribution. In contrast, supervised hash learning improves the learning 

quality of non-linear hash functions and improves the semantic discrimination of hash codes by 

using raw data and semantic label information[8]. To achieve a good balance between retrieval 

effect and processing cost, we focus on hash-based multimodal neuroimaging retrieval in this 

study. 

 

However, due to the following reasons, when the existing methods are directly applied to 

multimodal neuroimaging retrieval, usually no good results are achieved. The main reason is 

that, on the one hand, compared with natural images, neuroimaging usually contains complex 

tissue textures and anatomical structures. Minor lesions in local areas of the brain can 

significantly affect the diagnosis result. The reliability is high, which means that neuroimaging 

may show small inter-class variations. Distinct neuroimaging technologies, on the other hand, 

can produce different visual representations for the same item (for example, a pair of sMRI and 

PET scans from the same object), resulting in significant inter-modal variances. The existing 

methods use triplet loss for hash learning. Triplet loss usually only captures the local semantic 

similarity between neuroimaging samples, which cannot well solve the semantic distribution 

problem of complex neuroimaging. Therefore, it is very necessary to develop an advanced hash 

learning technology to solve the problems of small interclass changes and large inter-modal 

differences in the process of neuroimaging image retrieval, thereby effectively increasing the 

neuroimaging retrieval effect. 

 

In order to handle inter-class and intra-class differences of neuroimaging and effectively 

solve the problem of triplet loss, we propose a deep multimodal neuroimaging retrieval method 

based on adaptive hash semantic learning. This method uses convolutional neural networks to 

learn semantic information behind images. At the same time, a network structure is designed to 

perform semantic hash coding on the semantic tags of all neuroimages for learning by the hash 

network. Finally, based on Bayesian learning framework, semantic distribution of 

neuroimaging is learnt, so that the generated hash code can effectively distinguish 

neuroimaging of different types. 

 

The rest of this paper is arranged as follows. The second part reviews related hash learning 

methods in detail, the third part details the deep multimodal neuroimaging retrieval method 

based on adaptive hash semantics, and the fourth part is the analysis of experimental results for 

detailed description of the experimental effects of our method in some neuroimaging data sets. 

The fifth part is the conclusion, which summarizes, analyzes and prospects the deep 
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multimodal neuroimaging retrieval method. 

 

II. RELATED WORK 

 

Data-independent and data-related approaches are two types of traditional hash learning 

algorithms. The data-independent method learns the nonlinear hash function from hand-made 

features in two stages, with the hash code learning process and the feature learning process 

separated, which may result in the development of a sub-optimal hash function. Data-related 

methods sometimes become learning-based hashing methods, which can be further divided into 

(1) hashing methods based on shallow learning, such as hash forests based on metrics and 

hashing methods based on kernel functions; (2) hash methods based on deep learning, such as 

compact hash code learning based on image restoration, and deep hash network methods. 

Data-related approaches, as opposed to data-independent methods, extract global information 

for hashing in an end-to-end manner and discover the best hash function by integrating a hash 

network layer[9-12]. The relevance of neuroimaging retrieval is mainly based on the visual 

similarity of neuroimage rather than the entire image, so it is necessary to effectively explore 

regional instances. Recently, many existing image retrieval work usually extracts visual 

features by using convolutional neural networks (CNN), so that the unique visual features of 

image instances are not lost in the global image. Early methods mainly focus on replacing 

traditional manual feature descriptions with fully connected layer features. The existing 

methods have achieved significant progress mainly by encoding the activation of the 

convolutional layer as a regional feature descriptor. In the image retrieval based on 

convolutional neural network, it is necessary to fully consider the system retrieval effect and 

performance. This paper mainly studies data-related methods. Next, we respectively summarize 

some representative works of shallow learning and deep learning methods. 

 

2.1 Shallow Hash Learning Method 

 

The shallow hash learning method mainly uses hand-made features to learn linear or 

non-linear mapping functions, so that the neuroimages of each modal are mapped and 

converted into binary vectors. Representative methods in this category include cross-modal 

similarity-sensitive hashing (CMSSH), semantic correlation maximization hashing method 

(SCM), cross-media hashing (IMH), cross-view hashing (CVH), latent semantic sparseness 

hashing (LSSH), collective matrix factorization hashing (CMFH) and semantic preserving 

hashing (SePH). CMSSH is a supervised hash learning method that uses feature decomposition 

and promotion, and designs a cross-mode to preserve the similarity within the class. SCM[11] 

uses label information to learn the conversion information of specific modalities and retains the 

maximum semantic relevance between modalities. IMH[8] is an unsupervised hashing 
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approach for achieving inter-modal and intra-modal consistency by encoding data. CVH[9] 

proposes an unsupervised cross-modal spectral hashing method so that the hash function 

preserves cross-modal similarity. In the public domain, LSSH employs sparse coding and 

matrix decomposition to generate a unified binary representation using the latent space learning 

method. CMFH learns a unified binary hash code by using a latent factor model for matrix 

factorization in the training phase. By building an affinity matrix in the probability distribution 

while reducing the KL divergence, SePH[10] generates a unified binary hash code. 

 

2.2 Deep Hash Learning Method 

 

Many deep cross-modal hashing algorithms have recently been proposed to improve the 

hash learning impact and ability, owing to deep neural networks' powerful arbitrarily nonlinear 

representation ability. To create binary code, Deep Visual Semantic Hashing (DVSH) learns a 

visual semantic fusion network with cosine hinge loss, and to generate a hash function, it learns 

a modal-specific deep network. However, DVSH can only be used in some special cross-modal 

scenarios, one of which must be temporal dynamics. Deep Cross Modal Hashing (DCMH) [13] 

is a deep learning system that leverages negative log-likelihood loss to construct cross-modal 

similarity-preserving hash codes. CAH (Auto-Encoding Correlation Hash) learns the hash 

function by optimizing the common features and semantic correlation between distinct 

modalities through auto-encoder architecture. Adversarial Cross-Modal Retrieval (ACMR) uses 

classification and adversarial learning methods to distinguish different modalities and generate 

binary hash codes. Self-Supervised Adversarial Hashing (SSAH) employs two adversarial 

networks to simultaneously model distinct modalities and capture their semantic importance, 

all while generating binary hash codes under the supervision of learnt semantic features. 

Cross-Modal Deep Variational Hashing (CMDVH) uses a two-step framework. The method 

learns the uniform hash code of cross-modal pairs in the database in the first step, and uses the 

learned uniform hash code to learn the hash function in the second step. As a result, for 

CMDVH, the hash function learned in the second stage cannot provide input to guide the 

unified hash code improvement. 

 

The hash learning method has been studied by many scholars. However, when directly 

applied to multimodal neuroimaging retrieval, these methods usually cannot achieve good 

results mainly because neuroimaging has small interclass variation. At the same time, 

neuroimaging also has great inter-modal differences. The existing methods cannot well solve 

the semantic distribution problem of complex neuroimaging. Therefore, this paper proposes a 

deep multimodal neuroimaging retrieval method based on adaptive hash semantics. 

 

III. DEEP MULTIMODAL IMAGE RETRIEVAL BASED ON ADAPTIVE HASH 
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SEMANTICS 

 

3.1 Problem Definition 

 

Bold capital letters (for example, A) indicate the matrix, and A
T
 indicates the transpose of 

the matrix A. In addition, the sign function represents an element-by-element symbolic function, 

which is defined as: 

 

𝑠𝑖𝑔𝑛(𝑥) = {
−1 𝑖𝑓 𝑥 < 0,
1 𝑖𝑓 𝑥 >= 0

                      (1) 

 

Neuroimaging hashing is mainly to learn hash functions, so that neuroimaging images can 

be mapped to hash codes in Hamming space. Here, the hash code represents a binary vector, 

and the Hamming space contains a set of binary vectors. Suppose we have N given data image 

dataset 𝑋 = {𝑥𝑖}𝑖=1
𝑁 , and each image 𝑥𝑖  is associated with a label vector 𝑙𝑖 . We denote 

𝐵 = {𝑏𝑖}𝑖=1
𝑁  as the hash code of X, where 𝑏𝑖∈{−1, +1}𝑘 represents the binary hash code of 

sample 𝑥𝑖, k is the code length of the hash value, 𝑏𝑖𝑥 represents the 𝑥th element of 𝑏𝑖. 

 

Furthermore, we must assume that all modalities of each database instance have the same 

hash code in order to successfully bridge the gap between them. Furthermore, the query data 

points' generated hash codes can maintain semantic similarity in order to learn the database 

instances' hash codes and hash functions. Calculate the Hamming distance between two 

separate hash codes, as well as the semantic relationship of the similarity matrix that goes with 

it, for any two hash codes. 
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Fig 2: a framework diagram of deep multimodal neuroimaging retrieval based on adaptive hash 

semantics 

 

3.2 Overall Framework 

 

The overall framework is shown in Fig 2. The overall network structure contains two modal 

network branches. We use a similar network structure. Inspired by AlexNet, these two branch 

deep convolutional neural networks consist of five convolutional layers and three fully 

connected layers. Each fully connected layer learns a nonlinear mapping 𝑧𝑖 = 𝑊𝑖 ∗ 𝑧𝑖−1 + 𝑏𝑖. 

Where, 𝑧𝑖 is the output representation of the i-th hidden layer of the point 𝑥𝑖, 𝑊𝑖 and 𝑏𝑖 are 

the weight and bias parameter of the i-th layer, the activation function generally adopts the 

sigmod function. For the connection function of all hidden layers and fully connected layers, 

the ReLU function is generally selected. For the hash learning function, we replace the fully 

connected layer of the softmax classifier in the original AlexNet with a new fully connected 

layer of K hidden units. By using ℎ𝑖 = 𝑧𝑖
𝑙, the corresponding hidden layer representation is 

converted into K-dimensional hash coding. Where, 𝑙 = 8 is the total number of layers, which 

is the hidden representation of the fully connected layer. In order to popularize binary code as 

the representation of the hash layer, we first compress its output into [−1, 1] by using the 

hyperbolic tangent tanh activation function. In order to guarantee that the hash layer 

representation will be a good hash code, we must retain the similarity between a given pair of 

samples in the original sample similarity matrix, and control the quantization error of 

binarizing the hidden representation into a binary code. In addition to the specific network 

structure, the important innovation of this paper lies in the design of the objective function. In 

order to handle inter-class and intra-class differences of neuroimaging, and effectively solve the 

problem of triplet loss, we propose a deep multimodal neuroimaging retrieval method based on 

adaptive hash semantic learning. This method uses convolutional neural networks to learn 

semantic information behind images. At the same time, a network structure is designed to 

perform semantic hash coding on the semantic tags of all neuroimages for learning by the hash 

network. Finally, based on Bayesian learning framework, semantic distribution of 

neuroimaging is learnt, so that the generated hash code can effectively distinguish 

neuroimaging of different types. 

 

3.3 Objective Function of Adaptive Hash Semantics 

 

The objective function exerts an important effect on the generation of high-quality hash 

codes. In order to learn the semantic information behind images, our objective function 

includes Bayes-based semantic coding loss. At the same time, in order to preserve the similarity 

between the original ternary samples, our objective function also retains the original ternary 
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loss function. However, in order to weaken its effect on the overall optimization process, we 

control it through hyperparameters so that it has a limited impact on the optimization of our 

overall objective function. Our overall objective function is as follows: 

 

minΘ ℒall = Lclass + α𝑇                         (2) 

 

Here, Lclass  represents semantic loss function based on the Bayesian framework. T 

represents the similarity loss of ternary samples. a is a hyperparameter used to control T loss. 

 

3.3.1 Bayesian semantic loss function 

 

Lclass  is derived from the Bayesian framework and is defined as follows: Lclass =

log 𝑝 (𝐵𝑥, 𝐵𝑦|𝑆)  ∝ 𝑙𝑜𝑔 𝑝(𝑆|𝐵𝑥, 𝐵𝑦) 𝑝(𝐵𝑥) 𝑝(𝐵𝑦). 

 

Where, 𝑝(𝐵𝑥) and 𝑝(𝐵𝑦) are the prior distributions of the corresponding modal hash 

codes, and 𝑝(𝑆|𝐵𝑥, 𝐵𝑦) is an adaptive loss function based on semantics. 𝑝(𝑆|𝐵𝑥, 𝐵𝑦) is 

defined as follows:  

 

𝑝(𝑆|𝐵𝑥, 𝐵𝑦) = ∑ 𝑤𝑖𝑗𝑙𝑜𝑔𝑝(𝑠𝑖𝑗|𝑏𝑖
𝑥, 𝑏𝑗

𝑦
)𝑠𝑖𝑗 𝑖𝑛 𝑆
               (3) 

 

𝑤𝑖𝑗 represents the weight corresponding to each sample. 𝑝(𝑠𝑖𝑗|𝑏𝑖
𝑥 , 𝑏𝑗

𝑦
) is used to describe 

the influence of two modal hash codes on 𝑠𝑖𝑗. When 𝑠𝑖𝑗 is 1, the corresponding definition is as 

follows: 

 

𝑝(𝑠𝑖𝑗|𝑏𝑖
𝑥, 𝑏𝑗

𝑦
) = 𝜎 (𝐼(𝑏𝑖

𝑥, 𝑏𝑗
𝑦

))                     (4) 

 

𝜎 is the activation function of adaptive learning, which is defined as follows: 

 

𝜎 = 1/(1 + 𝑒(−𝑎𝑥))                         (5) 

 

Similarly, when 𝑠𝑖𝑗=0, 𝑝(𝑠𝑖𝑗|𝑏𝑖
𝑥 , 𝑏𝑗

𝑦
) is defined as follows: 

 

𝑝(𝑠𝑖𝑗|𝑏𝑖
𝑥, 𝑏𝑗

𝑦
) = 1 − 𝜎 (𝐼(𝑏𝑖

𝑥, 𝑏𝑗
𝑦

))                  (6) 

 

In the Bayesian framework, we adaptively control the hash semantic similarity between 

different modalities by using the similarity of paired samples. At the same time, each modal's 

image is represented by a hash code, which is an instance-invariant feature vector. In the 
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training phase, we input images to different branch networks and feed them forward to the hash 

layer. The hash layer is the last layer of each modal branch network. The intra-class distance 

can be optimized and lowered in the final layer using a loss function based on adaptive hashing 

semantics, while the inter-class distance can be maximized, avoiding the problem of easy 

confusion between difficult-to-distinguish samples. 

 

In order to allow branches of different modalities to learn the class-perceptual semantic 

information of pathological regions, it is used to distinguish the same manifestations of 

different diseases. Simultaneously, the spatial nuances of problematic regions from several 

branches are recorded in the hash layer in order to locate the nuances of the same disease at 

various phases. After the hash layer absorbs visual cues from many modalities in the training 

phase, feature aggregation in the testing phase allows us to produce hash codes from the learnt 

core nodes. The final hash code is generally implemented through the sgn(·) function. However, 

the sgn(·) function is not differentiable at zero, and for non-zero input, its derivation will be 

zero. This means that when the formula Lclass is minimized, the parameters of the modal hash 

network unique to modality will not be updated using the back propagation algorithm. 

Therefore, we directly discard the sgn(·) function to ensure that the parameters of our hash 

model can be updated, and add a quantization loss so that each element of different modalities 

can be close to "+1" or "-1". Furthermore, the query set is sampled from the database during the 

training phase. As a result, the hash code created by the learnt hash function should be the same 

as the directly learned hash code for generating the quantitative loss. That is, if a query instance 

is sampled from the database, the hash code and the learnt hash code should be as similar as 

possible. 

 

3.3.2 Ternary linguistic loss function 

 

In addition to considering Bayesian semantic loss, we also need retain the ternary semantic 

loss of different modal samples, so that the subtle differences between different neuroimages 

can be learned. In order to construct the T loss function, we use the triple loss, which is defined 

as follows: 

 

𝑇 = 𝐿𝑚𝑒𝑡𝑟𝑖𝑐 + 𝐿𝑝𝑢𝑠ℎ + 𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔                  (7) 

 

𝐿𝑚𝑒𝑡𝑟𝑖𝑐 is used to measure the similarity of different samples. 𝐿𝑝𝑢𝑠ℎ is to push each hash 

value to a discrete space. 𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 is used to balance each hash code. T loss is based on the 

visual semantic similarity intuition. In the learned metric space, photos with the same label 

should be closer to each other than images with different labels. In more detail, a sample of 

triples is randomly sampled from the data (anchor point, positive sample, negative sample). 



Forest Chemicals Revew 
www.forestchemicalsreview.com 
ISSN: 1520-0191  
July-August 2021 Page No. 944-957 
Article History: Received: 12 May 2021 Revised: 25 June 2021 Accepted: 22 July 2021 Publication: 31 August 2021 
  

953 
 

Where, the positive sample is the sample closer to the anchor point, and the negative sample is 

the sample not in the same category as the anchor point. In order to use the stochastic gradient 

descent method to train this function, we set a specific metric loss function, which is defined 

as: 

 

𝐿𝑚𝑒𝑡𝑟𝑖𝑐 = ∑ max(0, |𝑓(𝑎) − 𝑓(𝑝)|2
2 − |𝑓(𝑎) − 𝑓(𝑛)|2

2 + 𝑐)𝑀
𝑖=1     (8) 

 

Where, f(a), f(p) and f(n) represent anchor point sample, positive sample, and negative 

sample, respectively. c represents a parameter set empirically, which is used to control the 

distance between the positive, negative samples and the anchor point. Sometimes called the 

minimum margin threshold, it is mandatorily between a positive distance and a negative 

distance. Function f is a function that represents the various modes mentioned above. The 

output layer is the hash layer. In particular, we use the LeakyReLU function in the two hidden 

layers to allow negative gradients to flow during the back propagation, and use sigmoid 

activation in the last layer to limit the output activation in [0, 1]. In order to push the final real 

activation to the end of the sigmoid function range, we design the second loss to maximize the 

sum of squared errors between the output layer activation and the value 0.5, which is defined as 

follows: 

 

𝐿𝑝𝑢𝑠ℎ =
1

𝐾
∑ |𝑓(𝑥) − 0.5|2𝑀

𝑖=1                      (9) 

 

Where, M represents the number of batch samples. In addition, each neuron is encouraged 

to output the 01 hash code with a 50% probability. This means that the binary code 

representation of the image will have balanced 0s and 1s, so all bits of the hash code are used 

equally. Therefore, the balance loss is defined as follows: 

 

𝐿𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔 = ∑ (𝑚𝑒𝑎𝑛(𝑓(𝑥)) − 0.5)
2𝑀

𝑖=1               (10) 

 

Where, mean(f(x)) is the average value of output activation. After calculating the final loss 

of each mode, our final binary code is output through the sgn function. At the same time, in the 

retrieval process, the Hamming distance between the query image and each image in the data 

file is calculated, and the obtained distances are sorted in ascending order of magnitude. 

 

IV. EXPERIMENTAL ANALYSIS 

 

4.1 Data Set 

 

We evaluate our method on a popular benchmark dataset: the Alzheimer's disease 
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neuroimaging dataset ADNI1. Next, we introduce this data set in more detail. 

 

ADNI1 contains 821 subject-weighted sMRI scans, of which only 397 subjects had PET 

images. Each subject is annotated with a category-level label, namely Alzheimer's Disease 

(AD), Normal Control (NC), or Mild Cognitive Impairment (MCI). These labels are 

determined based on standard clinical criteria, including simple mental status test scores and 

clinical dementia scores. Among the subjects who underwent sMRI scans in ADNI1, there were 

229 NC, 393 MCI, and 199 AD subjects. For the PET data in ADNI1, there were 100 NC, 93 

AD, and 204 MCI subjects. 

 

We randomly select 10% of the photographs from each class to establish a test set, and the 

other images serve as the retrieval set in this data set. To improve the suggested technique, we 

choose 90 percent of the images from the retrieval set at random as the training set, and the 

remaining images as the validation set. We use standard pipelines to pre-process all sMRI and 

PET scans, including anterior commissure (AC)-posterior commissure (PC) correction, 

intensity correction, skull dissection, and cerebellar removal. Each PET image is aligned with 

its associated sMRI scan using affine registration. 

 

4.2 Benchmark Method 

 

The method proposed in this paper is first compared with three state-of-the-art cross-modal 

hashing methods based on traditional machine learning techniques, including CVH [9], SEPH 

[10] and SCM [11]. Then, it is compared with the three recently proposed modal hashing deep 

learning methods, including PGDH [12], DCMH [13] and CMHH [8]. Three traditional 

methods (i.e., CVH, SCM, and SEPH) are implemented using MATLAB, and four deep 

learning methods (i.e., DCMH, PGDH, CMHH, and our method) are implemented using 

Pytorch. All of the methods are overseen. We extract the gray matter volume from 90 ROIs as 

features representing sMR and PET images and use these ROI features as input for existing 

methods. For the deep learning method, we use the original image as input. In our method, for a 

specific modal hash network, all parameters are initialized randomly. We initially pre-train each 

modal specific hash network using a simplified optimized single modal version of the network 

to speed up model training. DCMH and PGDH use the same backbone network architecture 

and pre-training procedure as our method for a fair comparison. The experiment's parameters 

are all empirically determined. Adam is used to optimize the network parameters of four deep 

learning methods (i.e., DCMH, PGDH, CMHH and our method). Where, the initial learning 

rate is set to 0.01. 

 

4.3 Experimental Analysis 
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To evaluate all methodologies, this paper uses two evaluation indicators. These indicators, 

which include average precision average (MAP) and precision-recall, are based on the 

Hamming space ranking, which rates the returned data points according to the Hamming 

distance between them and the query. Because it initially generates a hash search table and 

returns data points within the given Hamming radius, the precise recall measure is based on 

hash search. The average query accuracy (MAP) is defined as the relationship between the 

query image and the database image for a particular query and a list of database sorted retrieval 

examples. Precision-recall indicates retrieval accuracy at various recall levels, which is a useful 

predictor of overall search performance. 

 

Table I shows the MAP results obtained by all methods on the ADNI1 data set. Here, 

"M→P" means that the query is an sMRI scan and the database contains PET images. "P→M" 

means that the query is PET image and the database has sMRI scans. From the results in table, 

we can observe an interesting finding. In other words, the MAP value of "M→P" is usually 

higher than the MAP value of "P→M". This may be due to the limited number of PET images. 

At the same time, since deep models usually require a large amount of training data to reduce 

overfitting, limited PET scans may lower the generalization ability of the hash function against 

PET modalities. Therefore, the hash code generated by MRI query may be superior to the hash 

code of PET query, which may cause a performance gap between the "M→P" and "P→M" 

tasks. Finally, from the results, we can also conclude that our method usually outperforms other 

benchmark methods to a large extent. 

 

Fig 3 shows the 16-bit, 32-bit, and 64-bit Precision-Recall curves (PR curves) on the 

ADNI1 data set. From these figures, we can observe that the Precision-Recall curve area of our 

method is larger than that of all baseline methods. It indicates that our method can effectively 

learn the hash semantic information behind different modal neuroimages, and has good 

algorithm retrieval performance. 

 

TABLE I. Experimental results of all methods 

 

Task Method 
ADNI1 

16bit 32bit 64bit 128bit 

M→P 

CVH 0.3933 0.3842 0.4163 0.3752 

SEPH 0.4378 0.4416 0.4063 0.4320 

SCM 0.5037 0.4713 0.5109 0.5174 

CMHH 0.4738 0.4323 0.4502 0.4144 

PGDH 0.5124 0.5181 0.5276 0.5225 

DCMH 0.5562 0.5529 0.5366 0.5306 
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Ours 0.5625 0.5533 0.5431 0.5437 

P→M 

CVH 0.3913 0.3992 0.4079 0.4138 

SEPH 0.4585 0.3962 0.4587 0.3688 

SCM 0.4806 0.4658 0.4599 0.4659 

CMHH 0.4017 0.4098 0.4072 0.4008 

PGDH 0.5097 0.4565 0.4422 0.4592 

DCMH 0.5248 0.4601 0.4518 0.4468 

Ours 0.5312 0.4837 0.4989 0.4826 

 

 

 
 

Fig 3: Precision-Recall curves of all methods 

 

V. CONCLUSION 

 

This paper introduces an adaptive hash semantic algorithm for multimodal neuroimage 

retrieval. Specifically, a deep multimodal neuroimaging retrieval method is proposed based on 

adaptive hash semantic learning. This method uses convolutional neural networks to learn 

semantic information behind images. At the same time, a network structure is designed to 

perform semantic hash coding on the semantic tags of all neuroimages for learning by the hash 

network. Finally, based on Bayesian learning framework, semantic distribution of 

neuroimaging is learnt, so that the generated hash code can effectively distinguish 

neuroimaging of different types. Comprehensive experiments show that our method has the 

most advanced cross-modal retrieval performance on multimodal neuroimage datasets. 
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